Exercice 1 (9 pts) : Soient les points $A(-3; -1), B(-1; 2)$ et $D(3; 0)$.
1. Placer les points dans le repère orthonormé ci-dessous (à compléter au fur et à mesure).
2. Calculer les coordonnées du point $C$ tel que $ABCD$ soit un parallélogramme.
3. Calculer les coordonnées du point $M$ centre du parallélogramme $ABCD$.
4. Déterminer les coordonnées du point $E$ vérifiant $\overrightarrow{CE} = \frac{1}{2} \overrightarrow{CB} + \frac{1}{4} \overrightarrow{BD}$.
5. Montrer que les points $A$, $E$ et $C$ sont alignés.
6. Calculer les coordonnées de $F$ tel que $\overrightarrow{FE} = 2 \overrightarrow{CE}$.
7. Montrer que $(DF)$ et $(OM)$ sont parallèles.
8. On considère le point $G(2; 3)$ ; quelle est la nature du triangle $BGD$ ? (à justifier par calcul)

Exercice 2 (6,5 pts) : Dans une classe de 25 élèves, on demande le nombre d’heures passées par semaine devant la télévision.
Les 12 filles répondent :

<table>
<thead>
<tr>
<th>heures passées devant la télévision</th>
<th>8</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>effectif</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>effectifs cumulés croissants</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

Les 13 garçons répondent :

<table>
<thead>
<tr>
<th>heures passées devant la télévision</th>
<th>3</th>
<th>7</th>
<th>8</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>18</th>
<th>22</th>
<th>36</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>effectif</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>effectifs cumulés croissants</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

1. Déterminer l’étendue et la moyenne de chacune des séries.
2. Déterminer la médiane, le 1er et le 3ème quartiles de chacune des séries (compléter les tableaux).
3. Construire le diagramme en boîte de chacune des séries et comparer.
Exercice 3 (4,5 pts) : Lors d’un contrôle radar sur une route nationale, les gendarmes ont relevé les vitesses suivantes :

<table>
<thead>
<tr>
<th>Vitesse en km/h</th>
<th>[70; 80]</th>
<th>[80; 90]</th>
<th>[90; 100]</th>
<th>[100; 110]</th>
<th>[110; 120]</th>
<th>[120; 130]</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectif</td>
<td>13</td>
<td>17</td>
<td>20</td>
<td>12</td>
<td>5</td>
<td>3</td>
<td>70</td>
</tr>
<tr>
<td>Fréquence en %</td>
<td>19</td>
<td>24</td>
<td>29</td>
<td>17</td>
<td>7</td>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>Fréq. cumulées croissantes</td>
<td>49</td>
<td>43</td>
<td>72</td>
<td>89</td>
<td>96</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

1. Déterminer l’étendue, l’effectif total et la moyenne (arrondie au km/h) des vitesses relevées.
2. Compléter le tableau : fréquences en % et fréquences cumulées croissantes (arrondir à l’unité).
3. Construire le polygone des fréquences cumulées croissantes.
4. Par lecture graphique, estimer la médiane, le 1er et le 3ème quartiles de la série ; interpréter concrètement deux de ces valeurs.
Ex 1 : 

2) ABCD parallélogramme
\[ \overrightarrow{BC} = \overrightarrow{DA} \]
\[ \overrightarrow{AB} = (2) \quad \overrightarrow{DC} = (x_c - 3, y_c) \]
\[ \implies x_c - 3 = 2 \]
\[ y_c = 3 \quad \text{donc} \quad C(5 ; 3) \]

3) M centre de ABCD
\[ \text{dans } M \text{ milieu de } [AC] \text{ et } [BD] \]
\[ \implies \overrightarrow{MN} = \frac{\overrightarrow{NA} + \overrightarrow{NC}}{2} = \frac{2}{2} = 1 \]
\[ y_n = \frac{-1 + 3}{2} = 1 \quad \text{donc} \quad M(-1 ; 1) \]

4) \( \overrightarrow{CE} = \frac{1}{2} \overrightarrow{CB} + \frac{1}{4} \overrightarrow{BD} \quad \overrightarrow{CE}(-6) \quad \overrightarrow{BD}(4) \)

\[ \implies \begin{cases} 
 x_c - 5 = \frac{1}{2} \times (-6) + \frac{1}{4} \times 4 \\
 y_c - 3 = \frac{1}{2} \times (-1) + \frac{1}{4} \times (-2) 
\end{cases} \]
\[ \implies \begin{cases} 
 x_c - 5 = -3 + 1 = -2 \\
 y_c - 3 = -1 - \frac{1}{2} = -\frac{3}{2} 
\end{cases} \quad \text{donc} \quad E(3 ; 2) \]

5) \( \overrightarrow{AC} = (8) \quad \overrightarrow{AE} = (3) \quad \overrightarrow{AC} \) et \( \overrightarrow{AE} \) sont colinéaires
\[ 8 \times 3 = 6 \times 4 = 24 \]
\[ \text{donc } \overrightarrow{AC} \text{ et } \overrightarrow{AE} \text{ alignées} \]

6) \( \overrightarrow{FE} = 2 \overrightarrow{CE} \quad \implies \text{C milieu de } [EF] \)
\[ \implies \begin{cases} 
 3 - x_F = 2 \times (-2) = -4 \\
 2 - y_F = 2 \times (-1) = -2 
\end{cases} \quad \implies \begin{cases} 
 x_F = 3 + 4 = 7 \\
 y_F = 2 + 2 = 4 
\end{cases} \quad \text{donc } \overrightarrow{OF} \text{ et } \overrightarrow{OH} \text{ parallèles} \quad \text{donc } [OF] = [OM] \]

7) \( \overrightarrow{OH} = (4) \quad \overrightarrow{DF} = (4) \quad \overrightarrow{DF} = 4 \overrightarrow{OH} \)
\[ \overrightarrow{DF} \text{ et } \overrightarrow{OH} \text{ parallèles} \]

8) \( \overrightarrow{BG} = (3) \quad \overrightarrow{GD} = (1) \quad \overrightarrow{BD} = (4) \)
\[ \begin{cases} 
 B_G^2 = 9 + 1 = 10 \\
 G_D^2 = 1 + 9 = 10 \\
 B_D^2 = 16 + 4 = 20 
\end{cases} \]
\[ B_D^2 = B_G^2 + G_D^2 \]
\[ \text{d'après le théorème du cercle et le théorème du Pythagore, le triangle } BGD \text{ est rectangle en } G \]
\[ \text{d'où } B_G = G_D \]
\[ \text{donc } BGD \text{ est isocèle en } G \]
Pour les filles, l'étendue est de 14 h et la moyenne d'heures passées devant la télévision est de 15,3 h en

\[
\frac{3+3+7+8+14+2+15+16+18+22+3+13+36+43}{13} = \frac{240}{13} \approx 18,5
\]

Pour les garçons, l'étendue est de 40 h et la moyenne d'heures passées devant la télévision est de 18,5 h en

<table>
<thead>
<tr>
<th>filles</th>
<th>garçons</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 est pair</td>
<td>13 est impair</td>
</tr>
<tr>
<td>12/2 = 6</td>
<td>13/2 = 6,5</td>
</tr>
<tr>
<td>3 \times 12 = 36</td>
<td>3 \times 13 = 39</td>
</tr>
<tr>
<td>méd = 12+15/2 = 13,5 h moyenne de 6 et 18 valeurs.</td>
<td>méd = 16 h la tells valeur</td>
</tr>
<tr>
<td>( Q_1 = 11 h ) 4ème valeur</td>
<td>( Q_1 = 14 h ) 4ème valeur</td>
</tr>
<tr>
<td>( Q_3 = 19 h ) 9ème valeur</td>
<td>( Q_3 = 22 h ) 9ème valeur</td>
</tr>
</tbody>
</table>

Pour les garçons, la plupart des garçons est beaucoup plus dispersée (étendue de 40 h!!) 50% des filles environ regardent la télé entre 11 h et 22 h par semaine tandis que 50% des garçons regardent entre 14 h et 22 h par semaine.

\[
6 \times 3 : 4 \]

1) \( 130 - 70 = 60 \) l'étendue est de 60

\[
\text{eff} + \text{total} = 70.
\]

\[
\frac{75 \times 13 + 85 \times 17 + 95 \times 20 + 105 \times 12 + 115 \times 5 + 125 \times 3}{70} = \frac{6530}{70} \approx 93,3 \text{ km/h environ.}
\]

2) 3)

\( \text{med} = 92 \text{ km/h} \) \( Q_1 \approx 82 \text{ km/h} \) \( Q_3 \approx 102 \text{ km/h} \)

50% des vitesses sont comprises entre 70 et 92 km/h au moins 25% entre 70 et 102 km/h ;

au moins 75% entre 70 et 102 km/h ;